Structure of ³¹Na studied by the Monte-Carlo shell model[†]

I. Suzuki,^{*1} T. Yamada,^{*2} T. Yamato,^{*3} K. Yamada,^{*4} and S. Sato^{*1,*2}

Since anomalous properties of ³¹Na concerning the mass¹⁾ and the ground-state spin and magnetic mo $ment^{2}$ were observed in the 1970's, the structure of neutron-rich nuclei around N = 20 has attracted much interest, particularly concerning vanishing of the N = 20 magic number. Based on the Monte-Carlo shell model (MCSM),³⁾ we performed a systematic shell-model calculation for even-even $N \sim 20$ exotic nuclei with full mixing between the normal, intruder, and higher intruder configurations for the first time,⁴⁾ and gave a comprehensive picture of the region. As for odd-A nuclei, since we should adopt the J-compressed bases,³⁾ which require much computational time in the MCSM calculation, such a calculation was unfeasible until the Alphleet computer system⁵⁾ was introduced at RIKEN. In this report, the structure of a neutronrich odd-A nucleus 31 Na, which is expected to be in the "island of inversion", $^{(6)}$ is studied by the MCSM with the Alphleet computer system.

Since anomalous properties of ³¹Na concerning the mass¹⁾ and the ground-state spin and magnetic mo $ment^{2}$ were observed in the 1970's, the structure of neutron-rich nuclei around N = 20 has attracted much interest, particularly concerning vanishing of the N = 20 magic number. Based on the Monte-Carlo shell model (MCSM),³⁾ we performed a systematic shell-model calculation for even-even $N \sim 20$ exotic nuclei with full mixing between the normal, intruder, and higher intruder configurations for the first time,⁴⁾ and gave a comprehensive picture of the region. As for odd-A nuclei, since we should adopt the J-compressed bases,³⁾ which require much computational time in the MCSM calculation, such a calculation was unfeasible until the Alphleet computer system⁵⁾ was introduced at RIKEN. In this report, the structure of a neutronrich odd-A nucleus 31 Na, which is expected to be in the "island of inversion", $^{(6)}$ is studied by the MCSM with the Alphleet computer system.

In this report, the structure of a neutron-rich odd-A nucleus ³¹Na, which is expected to be in the "island of inversion",⁶⁾ is studied by the MCSM with the Alphleet computer system.

In this report, the structure of a neutron-rich odd-A nucleus ³¹Na, which is expected to be in the "island of inversion",⁶⁾ is studied by the MCSM with the Alphleet computer system.

$$Y = a + b + c + d + e + f + g$$
(1)

- *2 Department of Physics, University of Tokyo
- *³ Atomic Physics Laboratory, RIKEN
- ^{*4} Department of Physics, Omsk University

In this report, the structure of a neutron-rich odd-A nucleus ³¹Na, which is expected to be in the "island of inversion",⁶⁾ is studied by the MCSM with the Alphleet computer system.

In this report, the structure of a neutron-rich odd-A nucleus ³¹Na, which is expected to be in the "island of inversion",⁶⁾ is studied by the MCSM with the Alphleet computer system.

$$Y = \sum_{i=\infty}^{\infty} a_i + h + i + j + k + l + m \tag{2}$$

The energy levels of 31 Na are shown in Fig. 1. The ground-state spin $3/2^+$ agrees with an experiment, in contrast to the *sd*-shell model prediction of $5/2^+$. The calculated magnetic moment of the ground state is $2.17\,\mu_N$ with free-nucleon g factors being consistent with the experimental value of 2.283 (38) μ_N .²⁾ The present study shows that, while the ground state is dominated by the 2-particle 2-hole (2p2h) excitations from the N = 20 core, 4p4h and higher excited configurations are mixed and lower the ground-state energy by more than 700 keV. This energy gain gives rise to a better two-neutron separation energy. The first excited state obtained by the MCSM calculation is a $5/2^+$ state located at 310 keV, in good agreement with a recent measurement of $350 \pm 20 \text{ keV}$.⁷⁾ On the other hand, this level was calculated to lie around 200 keV in the 0p0h + 2p2h truncation. A comparison between the truncated and full calculations clearly indicates the importance of the higher intruder configurations (*i.e.*, 4p4h and higher excited configurations from N = 20core):^{a)} these configurations lower the ground state more than the first excited state, giving rise to a better agreement with experiment. The higher intruder

Fig. 1. Experimental energy levels of ³¹Na (Exp.) compared with those of the MCSM calculation (MCSM).

[†] Condensed from the article in Phys. Rev. Lett. **85**, 1827 (2000)

^{*1} RIKEN Nishina Center